Engrailed homeoprotein recruits the adenosine A1 receptor to potentiate ephrin A5 function in retinal growth cones.

نویسندگان

  • Olivier Stettler
  • Rajiv L Joshi
  • Andrea Wizenmann
  • Jürgen Reingruber
  • David Holcman
  • Colette Bouillot
  • François Castagner
  • Alain Prochiantz
  • Kenneth L Moya
چکیده

Engrailed 1 and engrailed 2 homeoprotein transcription factors (collectively Engrailed) display graded expression in the chick optic tectum where they participate in retino-tectal patterning. In vitro, extracellular Engrailed guides retinal ganglion cell (RGC) axons and synergises with ephrin A5 to provoke the collapse of temporal growth cones. In vivo disruption of endogenous extracellular Engrailed leads to misrouting of RGC axons. Here we characterise the signalling pathway of extracellular Engrailed. Our results show that Engrailed/ephrin A5 synergy in growth cone collapse involves adenosine A1 receptor activation after Engrailed-dependent ATP synthesis, followed by ATP secretion and hydrolysis to adenosine. This is, to our knowledge, the first evidence for a role of the adenosine A1 receptor in axon guidance. Based on these results, together with higher expression of the adenosine A1 receptor in temporal than nasal growth cones, we propose a computational model that illustrates how the interaction between Engrailed, ephrin A5 and adenosine could increase the precision of the retinal projection map.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the turning of Xenopus retinal axons induced by ephrin-A5.

The Eph family of receptor tyrosine kinases and their ligands, the ephrins, play important roles during development of the nervous system. Frequently they exert their functions through a repellent mechanism, so that, for example, an axon expressing an Eph receptor does not invade a territory in which an ephrin is expressed. Eph receptor activation requires membrane-associated ligands. This feat...

متن کامل

Ephrin-A5 Induces Collapse of Growth Cones by Activating Rho and Rho Kinase

The ephrins, ligands of Eph receptor tyrosine kinases, have been shown to act as repulsive guidance molecules and to induce collapse of neuronal growth cones. For the first time, we show that the ephrin-A5 collapse is mediated by activation of the small GTPase Rho and its downstream effector Rho kinase. In ephrin-A5-treated retinal ganglion cell cultures, Rho was activated and Rac was downregul...

متن کامل

Ephrin-A5 Suppresses Neurotrophin Evoked Neuronal Motility, ERK Activation and Gene Expression

During brain development, growth cones respond to attractive and repulsive axon guidance cues. How growth cones integrate guidance instructions is poorly understood. Here, we demonstrate a link between BDNF (brain derived neurotrophic factor), promoting axonal branching and ephrin-A5, mediating axonal repulsion via Eph receptor tyrosine kinase activation. BDNF enhanced growth cone filopodial dy...

متن کامل

Requirement of adenylate cyclase 1 for the ephrin-A5-dependent retraction of exuberant retinal axons.

The calcium-stimulated adenylate cyclase 1 (AC1) has been shown to be required for the refinement of the retinotopic map, but the mechanisms involved are not known. To investigate this question, we devised a retinotectal coculture preparation that reproduces the gradual acquisition of topographic specificity along the rostrocaudal axis of the superior colliculus (SC). Temporal retinal axons inv...

متن کامل

Neurite responses to ephrin-A5 modulated by BDNF: evidence for TrkB-EphA interactions.

In the developing visual system, growing retinal ganglion cell (RGC) axons are exposed to multiple guidance and growth factors. Furthermore, the relative levels of these factors are differentially regulated as topography is roughly established and then refined. We have shown that during the establishment of rough topography (P3), growth cones of pure and explanted RGCs treated with combinations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 139 1  شماره 

صفحات  -

تاریخ انتشار 2012